Hilbert-valued self-intersection local times for planar Brownian motion
نویسندگان
چکیده
منابع مشابه
Multiple intersection exponents for planar Brownian motion
Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...
متن کاملIntersection Exponents for Planar Brownian Motion
We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.
متن کاملRenormalized Self - Intersection Local Time for Fractional Brownian Motion
Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). Assume d ≥ 2. We prove that the renor-malized self-intersection local time ℓ = T 0 t 0 δ(B H t − B H s) ds dt − E T 0 t 0 δ(B H t − B H s) ds dt exists in L 2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a resul...
متن کاملIntersection Local Times for Infinite Systems of Planar Brownian Motions and for the Brownian Density Process By
Let Xt,', ,..., be a sequence of independent, planar Brownian motions starting at the points of a planar Poisson process of intensity A. Let a', 02,.. .. be independent, ±1 random variables. Let Lt(X', Xi) be the intersection local time of x' and Xi up to time t. We study the limit in distribution of A-1 EZ oi'ioLt(XV,XJ) as A -* o. The resulting process is called the intersection local time fo...
متن کاملAnalyticity of intersection exponents for planar Brownian motion
We show that the intersection exponents for planar Brownian motions are analytic. More precisely, let B and B′ be independent planar Brownian motions started from distinct points, and define the exponent ξ(1, λ) by E [ P [ B[0, t] ∩B[0, t] = ∅ ∣∣ B[0, t] ]λ ] ≈ t, t → ∞. Then the mapping λ 7→ ξ(1, λ) is real analytic in (0,∞). The same result is proved for the exponents ξ(k, λ) where k is a pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics
سال: 2018
ISSN: 1744-2508,1744-2516
DOI: 10.1080/17442508.2018.1521412