Hilbert-valued self-intersection local times for planar Brownian motion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple intersection exponents for planar Brownian motion

Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...

متن کامل

Intersection Exponents for Planar Brownian Motion

We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.

متن کامل

Renormalized Self - Intersection Local Time for Fractional Brownian Motion

Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). Assume d ≥ 2. We prove that the renor-malized self-intersection local time ℓ = T 0 t 0 δ(B H t − B H s) ds dt − E T 0 t 0 δ(B H t − B H s) ds dt exists in L 2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a resul...

متن کامل

Intersection Local Times for Infinite Systems of Planar Brownian Motions and for the Brownian Density Process By

Let Xt,', ,..., be a sequence of independent, planar Brownian motions starting at the points of a planar Poisson process of intensity A. Let a', 02,.. .. be independent, ±1 random variables. Let Lt(X', Xi) be the intersection local time of x' and Xi up to time t. We study the limit in distribution of A-1 EZ oi'ioLt(XV,XJ) as A -* o. The resulting process is called the intersection local time fo...

متن کامل

Analyticity of intersection exponents for planar Brownian motion

We show that the intersection exponents for planar Brownian motions are analytic. More precisely, let B and B′ be independent planar Brownian motions started from distinct points, and define the exponent ξ(1, λ) by E [ P [ B[0, t] ∩B[0, t] = ∅ ∣∣ B[0, t] ]λ ] ≈ t, t → ∞. Then the mapping λ 7→ ξ(1, λ) is real analytic in (0,∞). The same result is proved for the exponents ξ(k, λ) where k is a pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastics

سال: 2018

ISSN: 1744-2508,1744-2516

DOI: 10.1080/17442508.2018.1521412